Metamath Proof Explorer


Theorem f1dom2gOLD

Description: Obsolete version of f1dom2g as of 25-Sep-2024. (Contributed by Mario Carneiro, 24-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion f1dom2gOLD AVBWF:A1-1BAB

Proof

Step Hyp Ref Expression
1 f1f F:A1-1BF:AB
2 fex2 F:ABAVBWFV
3 1 2 syl3an1 F:A1-1BAVBWFV
4 3 3coml AVBWF:A1-1BFV
5 simp3 AVBWF:A1-1BF:A1-1B
6 f1eq1 f=Ff:A1-1BF:A1-1B
7 4 5 6 spcedv AVBWF:A1-1Bff:A1-1B
8 brdomg BWABff:A1-1B
9 8 3ad2ant2 AVBWF:A1-1BABff:A1-1B
10 7 9 mpbird AVBWF:A1-1BAB