Metamath Proof Explorer


Theorem f1imadifssran

Description: Condition for the range of a one-to-one function to be the range of one its restrictions. Variant of imadifssran . (Contributed by AV, 4-Oct-2025)

Ref Expression
Assertion f1imadifssran Fun F -1 F dom F A ran F A ran F = ran F A

Proof

Step Hyp Ref Expression
1 imadmrn F dom F = ran F
2 imadif Fun F -1 F dom F A = F dom F F A
3 2 sseq1d Fun F -1 F dom F A F A F dom F F A F A
4 ssundif F dom F F A F A F dom F F A F A
5 unidm F A F A = F A
6 5 sseq2i F dom F F A F A F dom F F A
7 id F dom F F A F dom F F A
8 imassrn F A ran F
9 8 1 sseqtrri F A F dom F
10 9 a1i F dom F F A F A F dom F
11 7 10 eqssd F dom F F A F dom F = F A
12 6 11 sylbi F dom F F A F A F dom F = F A
13 4 12 sylbir F dom F F A F A F dom F = F A
14 3 13 biimtrdi Fun F -1 F dom F A F A F dom F = F A
15 14 imp Fun F -1 F dom F A F A F dom F = F A
16 1 15 eqtr3id Fun F -1 F dom F A F A ran F = F A
17 16 ex Fun F -1 F dom F A F A ran F = F A
18 df-ima F A = ran F A
19 18 eqcomi ran F A = F A
20 19 sseq2i F dom F A ran F A F dom F A F A
21 19 eqeq2i ran F = ran F A ran F = F A
22 17 20 21 3imtr4g Fun F -1 F dom F A ran F A ran F = ran F A