Metamath Proof Explorer


Theorem f1ocof1ob

Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. (Contributed by GL and AV, 7-Oct-2024)

Ref Expression
Assertion f1ocof1ob F : A B G : C D ran F = C G F : A 1-1 onto D F : A 1-1 C G : C 1-1 onto D

Proof

Step Hyp Ref Expression
1 ffrn F : A B F : A ran F
2 1 3ad2ant1 F : A B G : C D ran F = C F : A ran F
3 feq3 ran F = C F : A ran F F : A C
4 3 3ad2ant3 F : A B G : C D ran F = C F : A ran F F : A C
5 2 4 mpbid F : A B G : C D ran F = C F : A C
6 f1cof1b F : A C G : C D ran F = C G F : A 1-1 D F : A 1-1 C G : C 1-1 D
7 5 6 syld3an1 F : A B G : C D ran F = C G F : A 1-1 D F : A 1-1 C G : C 1-1 D
8 ffn F : A B F Fn A
9 fnfocofob F Fn A G : C D ran F = C G F : A onto D G : C onto D
10 8 9 syl3an1 F : A B G : C D ran F = C G F : A onto D G : C onto D
11 7 10 anbi12d F : A B G : C D ran F = C G F : A 1-1 D G F : A onto D F : A 1-1 C G : C 1-1 D G : C onto D
12 anass F : A 1-1 C G : C 1-1 D G : C onto D F : A 1-1 C G : C 1-1 D G : C onto D
13 11 12 bitrdi F : A B G : C D ran F = C G F : A 1-1 D G F : A onto D F : A 1-1 C G : C 1-1 D G : C onto D
14 df-f1o G F : A 1-1 onto D G F : A 1-1 D G F : A onto D
15 df-f1o G : C 1-1 onto D G : C 1-1 D G : C onto D
16 15 anbi2i F : A 1-1 C G : C 1-1 onto D F : A 1-1 C G : C 1-1 D G : C onto D
17 13 14 16 3bitr4g F : A B G : C D ran F = C G F : A 1-1 onto D F : A 1-1 C G : C 1-1 onto D