Metamath Proof Explorer


Theorem faccl

Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004)

Ref Expression
Assertion faccl N0N!

Proof

Step Hyp Ref Expression
1 fveq2 j=0j!=0!
2 1 eleq1d j=0j!0!
3 fveq2 j=kj!=k!
4 3 eleq1d j=kj!k!
5 fveq2 j=k+1j!=k+1!
6 5 eleq1d j=k+1j!k+1!
7 fveq2 j=Nj!=N!
8 7 eleq1d j=Nj!N!
9 fac0 0!=1
10 1nn 1
11 9 10 eqeltri 0!
12 facp1 k0k+1!=k!k+1
13 12 adantl k!k0k+1!=k!k+1
14 nn0p1nn k0k+1
15 nnmulcl k!k+1k!k+1
16 14 15 sylan2 k!k0k!k+1
17 13 16 eqeltrd k!k0k+1!
18 17 expcom k0k!k+1!
19 2 4 6 8 11 18 nn0ind N0N!