Metamath Proof Explorer


Theorem facnn2

Description: Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004)

Ref Expression
Assertion facnn2 NN!=N1! N

Proof

Step Hyp Ref Expression
1 elnnnn0 NNN10
2 facp1 N10N-1+1!=N1!N-1+1
3 2 adantl NN10N-1+1!=N1!N-1+1
4 npcan1 NN-1+1=N
5 4 fveq2d NN-1+1!=N!
6 5 adantr NN10N-1+1!=N!
7 4 oveq2d NN1!N-1+1=N1! N
8 7 adantr NN10N1!N-1+1=N1! N
9 3 6 8 3eqtr3d NN10N!=N1! N
10 1 9 sylbi NN!=N1! N