Metamath Proof Explorer


Theorem facp1

Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion facp1 N0N+1!=N!N+1

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 peano2nn NN+1
3 facnn N+1N+1!=seq1×IN+1
4 2 3 syl NN+1!=seq1×IN+1
5 ovex N+1V
6 fvi N+1VIN+1=N+1
7 5 6 ax-mp IN+1=N+1
8 7 oveq2i seq1×ININ+1=seq1×INN+1
9 seqp1 N1seq1×IN+1=seq1×ININ+1
10 nnuz =1
11 9 10 eleq2s Nseq1×IN+1=seq1×ININ+1
12 facnn NN!=seq1×IN
13 12 oveq1d NN!N+1=seq1×INN+1
14 8 11 13 3eqtr4a Nseq1×IN+1=N!N+1
15 4 14 eqtrd NN+1!=N!N+1
16 0p1e1 0+1=1
17 16 fveq2i 0+1!=1!
18 fac1 1!=1
19 17 18 eqtri 0+1!=1
20 fvoveq1 N=0N+1!=0+1!
21 fveq2 N=0N!=0!
22 oveq1 N=0N+1=0+1
23 21 22 oveq12d N=0N!N+1=0!0+1
24 fac0 0!=1
25 24 16 oveq12i 0!0+1=11
26 1t1e1 11=1
27 25 26 eqtri 0!0+1=1
28 23 27 eqtrdi N=0N!N+1=1
29 19 20 28 3eqtr4a N=0N+1!=N!N+1
30 15 29 jaoi NN=0N+1!=N!N+1
31 1 30 sylbi N0N+1!=N!N+1