Metamath Proof Explorer


Theorem fafv2elrnb

Description: An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion fafv2elrnb F:ABCAF''''CranF

Proof

Step Hyp Ref Expression
1 ffn F:ABFFnA
2 fnafv2elrn FFnACAF''''CranF
3 1 2 sylan F:ABCAF''''CranF
4 3 ex F:ABCAF''''CranF
5 fdm F:ABdomF=A
6 ndmafv2nrn ¬CdomFF''''CranF
7 df-nel F''''CranF¬F''''CranF
8 6 7 sylib ¬CdomF¬F''''CranF
9 8 con4i F''''CranFCdomF
10 eleq2 domF=ACdomFCA
11 9 10 imbitrid domF=AF''''CranFCA
12 5 11 syl F:ABF''''CranFCA
13 4 12 impbid F:ABCAF''''CranF