Metamath Proof Explorer


Theorem fallfaccl

Description: Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion fallfaccl AN0AN_

Proof

Step Hyp Ref Expression
1 ssid
2 ax-1cn 1
3 mulcl xyxy
4 nn0cn k0k
5 subcl AkAk
6 4 5 sylan2 Ak0Ak
7 1 2 3 6 fallfaccllem AN0AN_