Metamath Proof Explorer


Theorem fallrisefac

Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018)

Ref Expression
Assertion fallrisefac XN0XN_=1NXN

Proof

Step Hyp Ref Expression
1 nn0cn N0N
2 1 2timesd N02 N=N+N
3 2 oveq2d N012 N=1N+N
4 nn0z N0N
5 m1expeven N12 N=1
6 4 5 syl N012 N=1
7 neg1cn 1
8 expadd 1N0N01N+N=1N1N
9 7 8 mp3an1 N0N01N+N=1N1N
10 9 anidms N01N+N=1N1N
11 3 6 10 3eqtr3rd N01N1N=1
12 11 adantl XN01N1N=1
13 negneg XX=X
14 13 adantr XN0X=X
15 14 oveq1d XN0XN_=XN_
16 12 15 oveq12d XN01N1NXN_=1XN_
17 expcl 1N01N
18 7 17 mpan N01N
19 18 adantl XN01N
20 negcl XX
21 20 negcld XX
22 fallfaccl XN0XN_
23 21 22 sylan XN0XN_
24 19 19 23 mulassd XN01N1NXN_=1N1NXN_
25 fallfaccl XN0XN_
26 25 mullidd XN01XN_=XN_
27 16 24 26 3eqtr3rd XN0XN_=1N1NXN_
28 risefallfac XN0XN=1NXN_
29 20 28 sylan XN0XN=1NXN_
30 29 oveq2d XN01NXN=1N1NXN_
31 27 30 eqtr4d XN0XN_=1NXN