Metamath Proof Explorer


Theorem faovcl

Description: Closure law for an operation, analogous to fovcl . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis faovcl.1 F : R × S C
Assertion faovcl A R B S A F B C

Proof

Step Hyp Ref Expression
1 faovcl.1 F : R × S C
2 ffnaov F : R × S C F Fn R × S x R y S x F y C
3 2 simprbi F : R × S C x R y S x F y C
4 1 3 ax-mp x R y S x F y C
5 eqidd x = A F = F
6 id x = A x = A
7 eqidd x = A y = y
8 5 6 7 aoveq123d x = A x F y = A F y
9 8 eleq1d x = A x F y C A F y C
10 eqidd y = B F = F
11 eqidd y = B A = A
12 id y = B y = B
13 10 11 12 aoveq123d y = B A F y = A F B
14 13 eleq1d y = B A F y C A F B C
15 9 14 rspc2v A R B S x R y S x F y C A F B C
16 4 15 mpi A R B S A F B C