Metamath Proof Explorer


Theorem fclsss2

Description: A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion fclsss2 JTopOnXFFilXFGJfClusGJfClusF

Proof

Step Hyp Ref Expression
1 simpl3 JTopOnXFFilXFGxJfClusGFG
2 ssralv FGsGxclsJssFxclsJs
3 1 2 syl JTopOnXFFilXFGxJfClusGsGxclsJssFxclsJs
4 simpl1 JTopOnXFFilXFGxJfClusGJTopOnX
5 fclstopon xJfClusGJTopOnXGFilX
6 5 adantl JTopOnXFFilXFGxJfClusGJTopOnXGFilX
7 4 6 mpbid JTopOnXFFilXFGxJfClusGGFilX
8 isfcls2 JTopOnXGFilXxJfClusGsGxclsJs
9 4 7 8 syl2anc JTopOnXFFilXFGxJfClusGxJfClusGsGxclsJs
10 simpl2 JTopOnXFFilXFGxJfClusGFFilX
11 isfcls2 JTopOnXFFilXxJfClusFsFxclsJs
12 4 10 11 syl2anc JTopOnXFFilXFGxJfClusGxJfClusFsFxclsJs
13 3 9 12 3imtr4d JTopOnXFFilXFGxJfClusGxJfClusGxJfClusF
14 13 ex JTopOnXFFilXFGxJfClusGxJfClusGxJfClusF
15 14 pm2.43d JTopOnXFFilXFGxJfClusGxJfClusF
16 15 ssrdv JTopOnXFFilXFGJfClusGJfClusF