Metamath Proof Explorer


Theorem fclsrest

Description: The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion fclsrest JTopOnXFFilXYFJ𝑡YfClusF𝑡Y=JfClusFY

Proof

Step Hyp Ref Expression
1 simp1 JTopOnXFFilXYFJTopOnX
2 filelss FFilXYFYX
3 2 3adant1 JTopOnXFFilXYFYX
4 resttopon JTopOnXYXJ𝑡YTopOnY
5 1 3 4 syl2anc JTopOnXFFilXYFJ𝑡YTopOnY
6 filfbas FFilXFfBasX
7 6 3ad2ant2 JTopOnXFFilXYFFfBasX
8 simp3 JTopOnXFFilXYFYF
9 fbncp FfBasXYF¬XYF
10 7 8 9 syl2anc JTopOnXFFilXYF¬XYF
11 simp2 JTopOnXFFilXYFFFilX
12 trfil3 FFilXYXF𝑡YFilY¬XYF
13 11 3 12 syl2anc JTopOnXFFilXYFF𝑡YFilY¬XYF
14 10 13 mpbird JTopOnXFFilXYFF𝑡YFilY
15 fclsopn J𝑡YTopOnYF𝑡YFilYxJ𝑡YfClusF𝑡YxYyJ𝑡YxyzF𝑡Yyz
16 5 14 15 syl2anc JTopOnXFFilXYFxJ𝑡YfClusF𝑡YxYyJ𝑡YxyzF𝑡Yyz
17 in32 usY=uYs
18 ineq2 s=tuYs=uYt
19 17 18 eqtrid s=tusY=uYt
20 19 neeq1d s=tusYuYt
21 20 rspccv sFusYtFuYt
22 inss1 uYu
23 ssrin uYuuYtut
24 22 23 ax-mp uYtut
25 ssn0 uYtutuYtut
26 24 25 mpan uYtut
27 21 26 syl6 sFusYtFut
28 27 ralrimiv sFusYtFut
29 11 ad3antrrr JTopOnXFFilXYFxYuJsFFFilX
30 simpr JTopOnXFFilXYFxYuJsFsF
31 8 ad3antrrr JTopOnXFFilXYFxYuJsFYF
32 filin FFilXsFYFsYF
33 29 30 31 32 syl3anc JTopOnXFFilXYFxYuJsFsYF
34 ineq2 t=sYut=usY
35 inass usY=usY
36 34 35 eqtr4di t=sYut=usY
37 36 neeq1d t=sYutusY
38 37 rspcv sYFtFutusY
39 33 38 syl JTopOnXFFilXYFxYuJsFtFutusY
40 39 ralrimdva JTopOnXFFilXYFxYuJtFutsFusY
41 28 40 impbid2 JTopOnXFFilXYFxYuJsFusYtFut
42 41 imbi2d JTopOnXFFilXYFxYuJxusFusYxutFut
43 42 ralbidva JTopOnXFFilXYFxYuJxusFusYuJxutFut
44 vex uV
45 44 inex1 uYV
46 45 a1i JTopOnXFFilXYFxYuJuYV
47 elrest JTopOnXYFyJ𝑡YuJy=uY
48 47 3adant2 JTopOnXFFilXYFyJ𝑡YuJy=uY
49 48 adantr JTopOnXFFilXYFxYyJ𝑡YuJy=uY
50 eleq2 y=uYxyxuY
51 elin xuYxuxY
52 51 rbaib xYxuYxu
53 52 adantl JTopOnXFFilXYFxYxuYxu
54 50 53 sylan9bbr JTopOnXFFilXYFxYy=uYxyxu
55 vex sV
56 55 inex1 sYV
57 56 a1i JTopOnXFFilXYFxYsFsYV
58 elrest FFilXYFzF𝑡YsFz=sY
59 58 3adant1 JTopOnXFFilXYFzF𝑡YsFz=sY
60 59 adantr JTopOnXFFilXYFxYzF𝑡YsFz=sY
61 ineq2 z=sYyz=ysY
62 61 adantl JTopOnXFFilXYFxYz=sYyz=ysY
63 62 neeq1d JTopOnXFFilXYFxYz=sYyzysY
64 57 60 63 ralxfr2d JTopOnXFFilXYFxYzF𝑡YyzsFysY
65 ineq1 y=uYysY=uYsY
66 inindir usY=uYsY
67 65 66 eqtr4di y=uYysY=usY
68 67 neeq1d y=uYysYusY
69 68 ralbidv y=uYsFysYsFusY
70 64 69 sylan9bb JTopOnXFFilXYFxYy=uYzF𝑡YyzsFusY
71 54 70 imbi12d JTopOnXFFilXYFxYy=uYxyzF𝑡YyzxusFusY
72 46 49 71 ralxfr2d JTopOnXFFilXYFxYyJ𝑡YxyzF𝑡YyzuJxusFusY
73 1 adantr JTopOnXFFilXYFxYJTopOnX
74 11 adantr JTopOnXFFilXYFxYFFilX
75 3 sselda JTopOnXFFilXYFxYxX
76 fclsopn JTopOnXFFilXxJfClusFxXuJxutFut
77 76 baibd JTopOnXFFilXxXxJfClusFuJxutFut
78 73 74 75 77 syl21anc JTopOnXFFilXYFxYxJfClusFuJxutFut
79 43 72 78 3bitr4d JTopOnXFFilXYFxYyJ𝑡YxyzF𝑡YyzxJfClusF
80 79 pm5.32da JTopOnXFFilXYFxYyJ𝑡YxyzF𝑡YyzxYxJfClusF
81 16 80 bitrd JTopOnXFFilXYFxJ𝑡YfClusF𝑡YxYxJfClusF
82 elin xJfClusFYxJfClusFxY
83 82 biancomi xJfClusFYxYxJfClusF
84 81 83 bitr4di JTopOnXFFilXYFxJ𝑡YfClusF𝑡YxJfClusFY
85 84 eqrdv JTopOnXFFilXYFJ𝑡YfClusF𝑡Y=JfClusFY