Metamath Proof Explorer


Theorem trfil3

Description: Conditions for the trace of a filter L to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion trfil3 LFilYAYL𝑡AFilA¬YAL

Proof

Step Hyp Ref Expression
1 trfil2 LFilYAYL𝑡AFilAvLvA
2 dfral2 vLvA¬vL¬vA
3 nne ¬vAvA=
4 filelss LFilYvLvY
5 reldisj vYvA=vYA
6 4 5 syl LFilYvLvA=vYA
7 3 6 bitrid LFilYvL¬vAvYA
8 7 rexbidva LFilYvL¬vAvLvYA
9 8 adantr LFilYAYvL¬vAvLvYA
10 difssd AYYAY
11 elfilss LFilYYAYYALvLvYA
12 10 11 sylan2 LFilYAYYALvLvYA
13 9 12 bitr4d LFilYAYvL¬vAYAL
14 13 notbid LFilYAY¬vL¬vA¬YAL
15 2 14 bitrid LFilYAYvLvA¬YAL
16 1 15 bitrd LFilYAYL𝑡AFilA¬YAL