Metamath Proof Explorer


Theorem fclsval

Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis fclsval.x X=J
Assertion fclsval JTopFFilYJfClusF=ifX=YtFclsJt

Proof

Step Hyp Ref Expression
1 fclsval.x X=J
2 simpl JTopFFilYJTop
3 fvssunirn FilYranFil
4 3 sseli FFilYFranFil
5 4 adantl JTopFFilYFranFil
6 filn0 FFilYF
7 6 adantl JTopFFilYF
8 fvex clsJtV
9 8 rgenw tFclsJtV
10 iinexg FtFclsJtVtFclsJtV
11 7 9 10 sylancl JTopFFilYtFclsJtV
12 0ex V
13 ifcl tFclsJtVVifX=FtFclsJtV
14 11 12 13 sylancl JTopFFilYifX=FtFclsJtV
15 unieq j=Jj=J
16 15 1 eqtr4di j=Jj=X
17 unieq f=Ff=F
18 16 17 eqeqan12d j=Jf=Fj=fX=F
19 iineq1 f=Ftfclsjt=tFclsjt
20 19 adantl j=Jf=Ftfclsjt=tFclsjt
21 simpll j=Jf=FtFj=J
22 21 fveq2d j=Jf=FtFclsj=clsJ
23 22 fveq1d j=Jf=FtFclsjt=clsJt
24 23 iineq2dv j=Jf=FtFclsjt=tFclsJt
25 20 24 eqtrd j=Jf=Ftfclsjt=tFclsJt
26 18 25 ifbieq1d j=Jf=Fifj=ftfclsjt=ifX=FtFclsJt
27 df-fcls fClus=jTop,franFilifj=ftfclsjt
28 26 27 ovmpoga JTopFranFilifX=FtFclsJtVJfClusF=ifX=FtFclsJt
29 2 5 14 28 syl3anc JTopFFilYJfClusF=ifX=FtFclsJt
30 filunibas FFilYF=Y
31 30 eqeq2d FFilYX=FX=Y
32 31 adantl JTopFFilYX=FX=Y
33 32 ifbid JTopFFilYifX=FtFclsJt=ifX=YtFclsJt
34 29 33 eqtrd JTopFFilYJfClusF=ifX=YtFclsJt