Metamath Proof Explorer


Theorem fcnre

Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fcnre.1 K=topGenran.
fcnre.3 T=J
sfcnre.5 C=JCnK
fcnre.6 φFC
Assertion fcnre φF:T

Proof

Step Hyp Ref Expression
1 fcnre.1 K=topGenran.
2 fcnre.3 T=J
3 sfcnre.5 C=JCnK
4 fcnre.6 φFC
5 4 3 eleqtrdi φFJCnK
6 cntop1 FJCnKJTop
7 5 6 syl φJTop
8 2 toptopon JTopJTopOnT
9 7 8 sylib φJTopOnT
10 retopon topGenran.TopOn
11 1 10 eqeltri KTopOn
12 11 a1i φKTopOn
13 cnf2 JTopOnTKTopOnFJCnKF:T
14 9 12 5 13 syl3anc φF:T