Metamath Proof Explorer


Theorem fco

Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Assertion fco F:BCG:ABFG:AC

Proof

Step Hyp Ref Expression
1 ffun G:ABFunG
2 fcof F:BCFunGFG:G-1BC
3 1 2 sylan2 F:BCG:ABFG:G-1BC
4 fimacnv G:ABG-1B=A
5 4 eqcomd G:ABA=G-1B
6 5 adantl F:BCG:ABA=G-1B
7 6 feq2d F:BCG:ABFG:ACFG:G-1BC
8 3 7 mpbird F:BCG:ABFG:AC