Metamath Proof Explorer


Theorem fco

Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Assertion fco F : B C G : A B F G : A C

Proof

Step Hyp Ref Expression
1 ffun G : A B Fun G
2 fcof F : B C Fun G F G : G -1 B C
3 1 2 sylan2 F : B C G : A B F G : G -1 B C
4 fimacnv G : A B G -1 B = A
5 4 eqcomd G : A B A = G -1 B
6 5 adantl F : B C G : A B A = G -1 B
7 6 feq2d F : B C G : A B F G : A C F G : G -1 B C
8 3 7 mpbird F : B C G : A B F G : A C