Metamath Proof Explorer


Theorem fco3OLD

Description: Obsolete version of funcofd as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses fco3OLD.1 φFunF
fco3OLD.2 φFunG
Assertion fco3OLD φFG:G-1domFranF

Proof

Step Hyp Ref Expression
1 fco3OLD.1 φFunF
2 fco3OLD.2 φFunG
3 funco FunFFunGFunFG
4 1 2 3 syl2anc φFunFG
5 fdmrn FunFGFG:domFGranFG
6 4 5 sylib φFG:domFGranFG
7 dmco domFG=G-1domF
8 7 feq2i FG:domFGranFGFG:G-1domFranFG
9 6 8 sylib φFG:G-1domFranFG
10 rncoss ranFGranF
11 10 a1i φranFGranF
12 9 11 fssd φFG:G-1domFranF