Metamath Proof Explorer


Theorem fcobij

Description: Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017)

Ref Expression
Hypotheses fcobij.1 φ G : S 1-1 onto T
fcobij.2 φ R U
fcobij.3 φ S V
fcobij.4 φ T W
Assertion fcobij φ f S R G f : S R 1-1 onto T R

Proof

Step Hyp Ref Expression
1 fcobij.1 φ G : S 1-1 onto T
2 fcobij.2 φ R U
3 fcobij.3 φ S V
4 fcobij.4 φ T W
5 eqid f S R G f = f S R G f
6 f1of G : S 1-1 onto T G : S T
7 1 6 syl φ G : S T
8 7 adantr φ f S R G : S T
9 3 2 elmapd φ f S R f : R S
10 9 biimpa φ f S R f : R S
11 fco G : S T f : R S G f : R T
12 8 10 11 syl2anc φ f S R G f : R T
13 4 2 elmapd φ G f T R G f : R T
14 13 adantr φ f S R G f T R G f : R T
15 12 14 mpbird φ f S R G f T R
16 f1ocnv G : S 1-1 onto T G -1 : T 1-1 onto S
17 f1of G -1 : T 1-1 onto S G -1 : T S
18 1 16 17 3syl φ G -1 : T S
19 18 adantr φ h T R G -1 : T S
20 4 2 elmapd φ h T R h : R T
21 20 biimpa φ h T R h : R T
22 fco G -1 : T S h : R T G -1 h : R S
23 19 21 22 syl2anc φ h T R G -1 h : R S
24 3 2 elmapd φ G -1 h S R G -1 h : R S
25 24 adantr φ h T R G -1 h S R G -1 h : R S
26 23 25 mpbird φ h T R G -1 h S R
27 simpr φ f S R h T R f = G -1 h f = G -1 h
28 27 coeq2d φ f S R h T R f = G -1 h G f = G G -1 h
29 coass G G -1 h = G G -1 h
30 28 29 eqtr4di φ f S R h T R f = G -1 h G f = G G -1 h
31 simpll φ f S R h T R f = G -1 h φ
32 f1ococnv2 G : S 1-1 onto T G G -1 = I T
33 31 1 32 3syl φ f S R h T R f = G -1 h G G -1 = I T
34 33 coeq1d φ f S R h T R f = G -1 h G G -1 h = I T h
35 simplrr φ f S R h T R f = G -1 h h T R
36 31 35 21 syl2anc φ f S R h T R f = G -1 h h : R T
37 fcoi2 h : R T I T h = h
38 36 37 syl φ f S R h T R f = G -1 h I T h = h
39 30 34 38 3eqtrrd φ f S R h T R f = G -1 h h = G f
40 simpr φ f S R h T R h = G f h = G f
41 40 coeq2d φ f S R h T R h = G f G -1 h = G -1 G f
42 coass G -1 G f = G -1 G f
43 41 42 eqtr4di φ f S R h T R h = G f G -1 h = G -1 G f
44 simpll φ f S R h T R h = G f φ
45 f1ococnv1 G : S 1-1 onto T G -1 G = I S
46 44 1 45 3syl φ f S R h T R h = G f G -1 G = I S
47 46 coeq1d φ f S R h T R h = G f G -1 G f = I S f
48 simplrl φ f S R h T R h = G f f S R
49 44 48 10 syl2anc φ f S R h T R h = G f f : R S
50 fcoi2 f : R S I S f = f
51 49 50 syl φ f S R h T R h = G f I S f = f
52 43 47 51 3eqtrrd φ f S R h T R h = G f f = G -1 h
53 39 52 impbida φ f S R h T R f = G -1 h h = G f
54 5 15 26 53 f1o2d φ f S R G f : S R 1-1 onto T R