| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fcobij.1 | ⊢ ( 𝜑  →  𝐺 : 𝑆 –1-1-onto→ 𝑇 ) | 
						
							| 2 |  | fcobij.2 | ⊢ ( 𝜑  →  𝑅  ∈  𝑈 ) | 
						
							| 3 |  | fcobij.3 | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | fcobij.4 | ⊢ ( 𝜑  →  𝑇  ∈  𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ↦  ( 𝐺  ∘  𝑓 ) )  =  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ↦  ( 𝐺  ∘  𝑓 ) ) | 
						
							| 6 |  | f1of | ⊢ ( 𝐺 : 𝑆 –1-1-onto→ 𝑇  →  𝐺 : 𝑆 ⟶ 𝑇 ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  𝐺 : 𝑆 ⟶ 𝑇 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑆  ↑m  𝑅 ) )  →  𝐺 : 𝑆 ⟶ 𝑇 ) | 
						
							| 9 | 3 2 | elmapd | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ↔  𝑓 : 𝑅 ⟶ 𝑆 ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑆  ↑m  𝑅 ) )  →  𝑓 : 𝑅 ⟶ 𝑆 ) | 
						
							| 11 |  | fco | ⊢ ( ( 𝐺 : 𝑆 ⟶ 𝑇  ∧  𝑓 : 𝑅 ⟶ 𝑆 )  →  ( 𝐺  ∘  𝑓 ) : 𝑅 ⟶ 𝑇 ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑆  ↑m  𝑅 ) )  →  ( 𝐺  ∘  𝑓 ) : 𝑅 ⟶ 𝑇 ) | 
						
							| 13 | 4 2 | elmapd | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝑓 )  ∈  ( 𝑇  ↑m  𝑅 )  ↔  ( 𝐺  ∘  𝑓 ) : 𝑅 ⟶ 𝑇 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑆  ↑m  𝑅 ) )  →  ( ( 𝐺  ∘  𝑓 )  ∈  ( 𝑇  ↑m  𝑅 )  ↔  ( 𝐺  ∘  𝑓 ) : 𝑅 ⟶ 𝑇 ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑆  ↑m  𝑅 ) )  →  ( 𝐺  ∘  𝑓 )  ∈  ( 𝑇  ↑m  𝑅 ) ) | 
						
							| 16 |  | f1ocnv | ⊢ ( 𝐺 : 𝑆 –1-1-onto→ 𝑇  →  ◡ 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) | 
						
							| 17 |  | f1of | ⊢ ( ◡ 𝐺 : 𝑇 –1-1-onto→ 𝑆  →  ◡ 𝐺 : 𝑇 ⟶ 𝑆 ) | 
						
							| 18 | 1 16 17 | 3syl | ⊢ ( 𝜑  →  ◡ 𝐺 : 𝑇 ⟶ 𝑆 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) )  →  ◡ 𝐺 : 𝑇 ⟶ 𝑆 ) | 
						
							| 20 | 4 2 | elmapd | ⊢ ( 𝜑  →  ( ℎ  ∈  ( 𝑇  ↑m  𝑅 )  ↔  ℎ : 𝑅 ⟶ 𝑇 ) ) | 
						
							| 21 | 20 | biimpa | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) )  →  ℎ : 𝑅 ⟶ 𝑇 ) | 
						
							| 22 |  | fco | ⊢ ( ( ◡ 𝐺 : 𝑇 ⟶ 𝑆  ∧  ℎ : 𝑅 ⟶ 𝑇 )  →  ( ◡ 𝐺  ∘  ℎ ) : 𝑅 ⟶ 𝑆 ) | 
						
							| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) )  →  ( ◡ 𝐺  ∘  ℎ ) : 𝑅 ⟶ 𝑆 ) | 
						
							| 24 | 3 2 | elmapd | ⊢ ( 𝜑  →  ( ( ◡ 𝐺  ∘  ℎ )  ∈  ( 𝑆  ↑m  𝑅 )  ↔  ( ◡ 𝐺  ∘  ℎ ) : 𝑅 ⟶ 𝑆 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) )  →  ( ( ◡ 𝐺  ∘  ℎ )  ∈  ( 𝑆  ↑m  𝑅 )  ↔  ( ◡ 𝐺  ∘  ℎ ) : 𝑅 ⟶ 𝑆 ) ) | 
						
							| 26 | 23 25 | mpbird | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) )  →  ( ◡ 𝐺  ∘  ℎ )  ∈  ( 𝑆  ↑m  𝑅 ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) ) | 
						
							| 28 | 27 | coeq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  ( 𝐺  ∘  𝑓 )  =  ( 𝐺  ∘  ( ◡ 𝐺  ∘  ℎ ) ) ) | 
						
							| 29 |  | coass | ⊢ ( ( 𝐺  ∘  ◡ 𝐺 )  ∘  ℎ )  =  ( 𝐺  ∘  ( ◡ 𝐺  ∘  ℎ ) ) | 
						
							| 30 | 28 29 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  ( 𝐺  ∘  𝑓 )  =  ( ( 𝐺  ∘  ◡ 𝐺 )  ∘  ℎ ) ) | 
						
							| 31 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  𝜑 ) | 
						
							| 32 |  | f1ococnv2 | ⊢ ( 𝐺 : 𝑆 –1-1-onto→ 𝑇  →  ( 𝐺  ∘  ◡ 𝐺 )  =  (  I   ↾  𝑇 ) ) | 
						
							| 33 | 31 1 32 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  ( 𝐺  ∘  ◡ 𝐺 )  =  (  I   ↾  𝑇 ) ) | 
						
							| 34 | 33 | coeq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  ( ( 𝐺  ∘  ◡ 𝐺 )  ∘  ℎ )  =  ( (  I   ↾  𝑇 )  ∘  ℎ ) ) | 
						
							| 35 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) | 
						
							| 36 | 31 35 21 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  ℎ : 𝑅 ⟶ 𝑇 ) | 
						
							| 37 |  | fcoi2 | ⊢ ( ℎ : 𝑅 ⟶ 𝑇  →  ( (  I   ↾  𝑇 )  ∘  ℎ )  =  ℎ ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  ( (  I   ↾  𝑇 )  ∘  ℎ )  =  ℎ ) | 
						
							| 39 | 30 34 38 | 3eqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) )  →  ℎ  =  ( 𝐺  ∘  𝑓 ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  ℎ  =  ( 𝐺  ∘  𝑓 ) ) | 
						
							| 41 | 40 | coeq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  ( ◡ 𝐺  ∘  ℎ )  =  ( ◡ 𝐺  ∘  ( 𝐺  ∘  𝑓 ) ) ) | 
						
							| 42 |  | coass | ⊢ ( ( ◡ 𝐺  ∘  𝐺 )  ∘  𝑓 )  =  ( ◡ 𝐺  ∘  ( 𝐺  ∘  𝑓 ) ) | 
						
							| 43 | 41 42 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  ( ◡ 𝐺  ∘  ℎ )  =  ( ( ◡ 𝐺  ∘  𝐺 )  ∘  𝑓 ) ) | 
						
							| 44 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  𝜑 ) | 
						
							| 45 |  | f1ococnv1 | ⊢ ( 𝐺 : 𝑆 –1-1-onto→ 𝑇  →  ( ◡ 𝐺  ∘  𝐺 )  =  (  I   ↾  𝑆 ) ) | 
						
							| 46 | 44 1 45 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  ( ◡ 𝐺  ∘  𝐺 )  =  (  I   ↾  𝑆 ) ) | 
						
							| 47 | 46 | coeq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  ( ( ◡ 𝐺  ∘  𝐺 )  ∘  𝑓 )  =  ( (  I   ↾  𝑆 )  ∘  𝑓 ) ) | 
						
							| 48 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  𝑓  ∈  ( 𝑆  ↑m  𝑅 ) ) | 
						
							| 49 | 44 48 10 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  𝑓 : 𝑅 ⟶ 𝑆 ) | 
						
							| 50 |  | fcoi2 | ⊢ ( 𝑓 : 𝑅 ⟶ 𝑆  →  ( (  I   ↾  𝑆 )  ∘  𝑓 )  =  𝑓 ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  ( (  I   ↾  𝑆 )  ∘  𝑓 )  =  𝑓 ) | 
						
							| 52 | 43 47 51 | 3eqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  ∧  ℎ  =  ( 𝐺  ∘  𝑓 ) )  →  𝑓  =  ( ◡ 𝐺  ∘  ℎ ) ) | 
						
							| 53 | 39 52 | impbida | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ∧  ℎ  ∈  ( 𝑇  ↑m  𝑅 ) ) )  →  ( 𝑓  =  ( ◡ 𝐺  ∘  ℎ )  ↔  ℎ  =  ( 𝐺  ∘  𝑓 ) ) ) | 
						
							| 54 | 5 15 26 53 | f1o2d | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑆  ↑m  𝑅 )  ↦  ( 𝐺  ∘  𝑓 ) ) : ( 𝑆  ↑m  𝑅 ) –1-1-onto→ ( 𝑇  ↑m  𝑅 ) ) |