Metamath Proof Explorer


Theorem fconst3

Description: Two ways to express a constant function. (Contributed by NM, 15-Mar-2007)

Ref Expression
Assertion fconst3 F:ABFFnAAF-1B

Proof

Step Hyp Ref Expression
1 fconstfv F:ABFFnAxAFx=B
2 fnfun FFnAFunF
3 fndm FFnAdomF=A
4 eqimss2 domF=AAdomF
5 3 4 syl FFnAAdomF
6 funconstss FunFAdomFxAFx=BAF-1B
7 2 5 6 syl2anc FFnAxAFx=BAF-1B
8 7 pm5.32i FFnAxAFx=BFFnAAF-1B
9 1 8 bitri F:ABFFnAAF-1B