Metamath Proof Explorer


Theorem fcoreslem3

Description: Lemma 3 for fcores . (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fcores.f φ F : A B
fcores.e E = ran F C
fcores.p P = F -1 C
fcores.x X = F P
Assertion fcoreslem3 φ X : P onto E

Proof

Step Hyp Ref Expression
1 fcores.f φ F : A B
2 fcores.e E = ran F C
3 fcores.p P = F -1 C
4 fcores.x X = F P
5 1 ffnd φ F Fn A
6 2 a1i φ E = ran F C
7 3 a1i φ P = F -1 C
8 5 6 7 rescnvimafod φ F P : P onto E
9 foeq1 X = F P X : P onto E F P : P onto E
10 4 9 mp1i φ X : P onto E F P : P onto E
11 8 10 mpbird φ X : P onto E