Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
General auxiliary theorems (1)
Functions - extension
fcoreslem3
Next ⟩
fcoreslem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
fcoreslem3
Description:
Lemma 3 for
fcores
.
(Contributed by
AV
, 13-Sep-2024)
Ref
Expression
Hypotheses
fcores.f
⊢
φ
→
F
:
A
⟶
B
fcores.e
⊢
E
=
ran
⁡
F
∩
C
fcores.p
⊢
P
=
F
-1
C
fcores.x
⊢
X
=
F
↾
P
Assertion
fcoreslem3
⊢
φ
→
X
:
P
⟶
onto
E
Proof
Step
Hyp
Ref
Expression
1
fcores.f
⊢
φ
→
F
:
A
⟶
B
2
fcores.e
⊢
E
=
ran
⁡
F
∩
C
3
fcores.p
⊢
P
=
F
-1
C
4
fcores.x
⊢
X
=
F
↾
P
5
1
ffnd
⊢
φ
→
F
Fn
A
6
2
a1i
⊢
φ
→
E
=
ran
⁡
F
∩
C
7
3
a1i
⊢
φ
→
P
=
F
-1
C
8
5
6
7
rescnvimafod
⊢
φ
→
F
↾
P
:
P
⟶
onto
E
9
foeq1
⊢
X
=
F
↾
P
→
X
:
P
⟶
onto
E
↔
F
↾
P
:
P
⟶
onto
E
10
4
9
mp1i
⊢
φ
→
X
:
P
⟶
onto
E
↔
F
↾
P
:
P
⟶
onto
E
11
8
10
mpbird
⊢
φ
→
X
:
P
⟶
onto
E