Metamath Proof Explorer


Theorem fcoreslem3

Description: Lemma 3 for fcores . (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
Assertion fcoreslem3 φX:PontoE

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 1 ffnd φFFnA
6 2 a1i φE=ranFC
7 3 a1i φP=F-1C
8 5 6 7 rescnvimafod φFP:PontoE
9 foeq1 X=FPX:PontoEFP:PontoE
10 4 9 mp1i φX:PontoEFP:PontoE
11 8 10 mpbird φX:PontoE