Metamath Proof Explorer


Theorem feu

Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003)

Ref Expression
Assertion feu F:ABCA∃!yBCyF

Proof

Step Hyp Ref Expression
1 ffn F:ABFFnA
2 fneu2 FFnACA∃!yCyF
3 1 2 sylan F:ABCA∃!yCyF
4 opelf F:ABCyFCAyB
5 4 simprd F:ABCyFyB
6 5 ex F:ABCyFyB
7 6 pm4.71rd F:ABCyFyBCyF
8 7 eubidv F:AB∃!yCyF∃!yyBCyF
9 8 adantr F:ABCA∃!yCyF∃!yyBCyF
10 3 9 mpbid F:ABCA∃!yyBCyF
11 df-reu ∃!yBCyF∃!yyBCyF
12 10 11 sylibr F:ABCA∃!yBCyF