Metamath Proof Explorer


Theorem ffthf1o

Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses isfth.b B=BaseC
isfth.h H=HomC
isfth.j J=HomD
ffthf1o.f φFCFullDCFaithDG
ffthf1o.x φXB
ffthf1o.y φYB
Assertion ffthf1o φXGY:XHY1-1 ontoFXJFY

Proof

Step Hyp Ref Expression
1 isfth.b B=BaseC
2 isfth.h H=HomC
3 isfth.j J=HomD
4 ffthf1o.f φFCFullDCFaithDG
5 ffthf1o.x φXB
6 ffthf1o.y φYB
7 brin FCFullDCFaithDGFCFullDGFCFaithDG
8 4 7 sylib φFCFullDGFCFaithDG
9 8 simprd φFCFaithDG
10 1 2 3 9 5 6 fthf1 φXGY:XHY1-1FXJFY
11 8 simpld φFCFullDG
12 1 3 2 11 5 6 fullfo φXGY:XHYontoFXJFY
13 df-f1o XGY:XHY1-1 ontoFXJFYXGY:XHY1-1FXJFYXGY:XHYontoFXJFY
14 10 12 13 sylanbrc φXGY:XHY1-1 ontoFXJFY