| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fullpropd.1 |
|
| 2 |
|
fullpropd.2 |
|
| 3 |
|
fullpropd.3 |
|
| 4 |
|
fullpropd.4 |
|
| 5 |
|
fullpropd.a |
|
| 6 |
|
fullpropd.b |
|
| 7 |
|
fullpropd.c |
|
| 8 |
|
fullpropd.d |
|
| 9 |
|
relfull |
|
| 10 |
|
relfull |
|
| 11 |
1
|
homfeqbas |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
adantr |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
3
|
ad3antrrr |
|
| 18 |
|
eqid |
|
| 19 |
|
simpllr |
|
| 20 |
18 14 19
|
funcf1 |
|
| 21 |
|
simplr |
|
| 22 |
20 21
|
ffvelcdmd |
|
| 23 |
|
simpr |
|
| 24 |
20 23
|
ffvelcdmd |
|
| 25 |
14 15 16 17 22 24
|
homfeqval |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
13 26
|
raleqbidva |
|
| 28 |
12 27
|
raleqbidva |
|
| 29 |
28
|
pm5.32da |
|
| 30 |
1 2 3 4 5 6 7 8
|
funcpropd |
|
| 31 |
30
|
breqd |
|
| 32 |
31
|
anbi1d |
|
| 33 |
29 32
|
bitrd |
|
| 34 |
18 15
|
isfull |
|
| 35 |
|
eqid |
|
| 36 |
35 16
|
isfull |
|
| 37 |
33 34 36
|
3bitr4g |
|
| 38 |
9 10 37
|
eqbrrdiv |
|