Metamath Proof Explorer


Theorem fib0

Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib0 Fibci 0 = 0

Proof

Step Hyp Ref Expression
1 df-fib Fibci = ⟨“ 0 1 ”⟩ seq str w Word 0 . -1 2 w w 2 + w w 1
2 1 fveq1i Fibci 0 = ⟨“ 0 1 ”⟩ seq str w Word 0 . -1 2 w w 2 + w w 1 0
3 nn0ex 0 V
4 3 a1i 0 V
5 0nn0 0 0
6 5 a1i 0 0
7 1nn0 1 0
8 7 a1i 1 0
9 6 8 s2cld ⟨“ 0 1 ”⟩ Word 0
10 eqid Word 0 . -1 ⟨“ 0 1 ”⟩ = Word 0 . -1 ⟨“ 0 1 ”⟩
11 fiblem w Word 0 . -1 2 w w 2 + w w 1 : Word 0 . -1 ⟨“ 0 1 ”⟩ 0
12 11 a1i w Word 0 . -1 2 w w 2 + w w 1 : Word 0 . -1 ⟨“ 0 1 ”⟩ 0
13 2nn 2
14 lbfzo0 0 0 ..^ 2 2
15 13 14 mpbir 0 0 ..^ 2
16 s2len ⟨“ 0 1 ”⟩ = 2
17 16 oveq2i 0 ..^ ⟨“ 0 1 ”⟩ = 0 ..^ 2
18 15 17 eleqtrri 0 0 ..^ ⟨“ 0 1 ”⟩
19 18 a1i 0 0 ..^ ⟨“ 0 1 ”⟩
20 4 9 10 12 19 sseqfv1 ⟨“ 0 1 ”⟩ seq str w Word 0 . -1 2 w w 2 + w w 1 0 = ⟨“ 0 1 ”⟩ 0
21 20 mptru ⟨“ 0 1 ”⟩ seq str w Word 0 . -1 2 w w 2 + w w 1 0 = ⟨“ 0 1 ”⟩ 0
22 s2fv0 0 0 ⟨“ 0 1 ”⟩ 0 = 0
23 5 22 ax-mp ⟨“ 0 1 ”⟩ 0 = 0
24 2 21 23 3eqtri Fibci 0 = 0