Metamath Proof Explorer


Theorem fib0

Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib0 Fibci0=0

Proof

Step Hyp Ref Expression
1 df-fib Fibci=⟨“01”⟩seqstrwWord0.-12ww2+ww1
2 1 fveq1i Fibci0=⟨“01”⟩seqstrwWord0.-12ww2+ww10
3 nn0ex 0V
4 3 a1i 0V
5 0nn0 00
6 5 a1i 00
7 1nn0 10
8 7 a1i 10
9 6 8 s2cld ⟨“01”⟩Word0
10 eqid Word0.-1⟨“01”⟩=Word0.-1⟨“01”⟩
11 fiblem wWord0.-12ww2+ww1:Word0.-1⟨“01”⟩0
12 11 a1i wWord0.-12ww2+ww1:Word0.-1⟨“01”⟩0
13 2nn 2
14 lbfzo0 00..^22
15 13 14 mpbir 00..^2
16 s2len ⟨“01”⟩=2
17 16 oveq2i 0..^⟨“01”⟩=0..^2
18 15 17 eleqtrri 00..^⟨“01”⟩
19 18 a1i 00..^⟨“01”⟩
20 4 9 10 12 19 sseqfv1 ⟨“01”⟩seqstrwWord0.-12ww2+ww10=⟨“01”⟩0
21 20 mptru ⟨“01”⟩seqstrwWord0.-12ww2+ww10=⟨“01”⟩0
22 s2fv0 00⟨“01”⟩0=0
23 5 22 ax-mp ⟨“01”⟩0=0
24 2 21 23 3eqtri Fibci0=0