Metamath Proof Explorer


Theorem ficardun2

Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013) Avoid ax-rep . (Revised by BTernaryTau, 3-Jul-2024)

Ref Expression
Assertion ficardun2 AFinBFincardABcardA+𝑜cardB

Proof

Step Hyp Ref Expression
1 undjudom AFinBFinABA⊔︀B
2 ficardadju AFinBFinA⊔︀BcardA+𝑜cardB
3 domentr ABA⊔︀BA⊔︀BcardA+𝑜cardBABcardA+𝑜cardB
4 1 2 3 syl2anc AFinBFinABcardA+𝑜cardB
5 unfi AFinBFinABFin
6 finnum ABFinABdomcard
7 5 6 syl AFinBFinABdomcard
8 ficardom AFincardAω
9 ficardom BFincardBω
10 nnacl cardAωcardBωcardA+𝑜cardBω
11 8 9 10 syl2an AFinBFincardA+𝑜cardBω
12 nnon cardA+𝑜cardBωcardA+𝑜cardBOn
13 onenon cardA+𝑜cardBOncardA+𝑜cardBdomcard
14 11 12 13 3syl AFinBFincardA+𝑜cardBdomcard
15 carddom2 ABdomcardcardA+𝑜cardBdomcardcardABcardcardA+𝑜cardBABcardA+𝑜cardB
16 7 14 15 syl2anc AFinBFincardABcardcardA+𝑜cardBABcardA+𝑜cardB
17 4 16 mpbird AFinBFincardABcardcardA+𝑜cardB
18 cardnn cardA+𝑜cardBωcardcardA+𝑜cardB=cardA+𝑜cardB
19 11 18 syl AFinBFincardcardA+𝑜cardB=cardA+𝑜cardB
20 17 19 sseqtrd AFinBFincardABcardA+𝑜cardB