| Step | Hyp | Ref | Expression | 
						
							| 1 |  | undjudom |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) ~<_ ( A |_| B ) ) | 
						
							| 2 |  | ficardadju |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 3 |  | domentr |  |-  ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) -> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 4 | 1 2 3 | syl2anc |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 5 |  | unfi |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) | 
						
							| 6 |  | finnum |  |-  ( ( A u. B ) e. Fin -> ( A u. B ) e. dom card ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. dom card ) | 
						
							| 8 |  | ficardom |  |-  ( A e. Fin -> ( card ` A ) e. _om ) | 
						
							| 9 |  | ficardom |  |-  ( B e. Fin -> ( card ` B ) e. _om ) | 
						
							| 10 |  | nnacl |  |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) | 
						
							| 11 | 8 9 10 | syl2an |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) | 
						
							| 12 |  | nnon |  |-  ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( ( card ` A ) +o ( card ` B ) ) e. On ) | 
						
							| 13 |  | onenon |  |-  ( ( ( card ` A ) +o ( card ` B ) ) e. On -> ( ( card ` A ) +o ( card ` B ) ) e. dom card ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) e. dom card ) | 
						
							| 15 |  | carddom2 |  |-  ( ( ( A u. B ) e. dom card /\ ( ( card ` A ) +o ( card ` B ) ) e. dom card ) -> ( ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) <-> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) ) | 
						
							| 16 | 7 14 15 | syl2anc |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) <-> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) ) | 
						
							| 17 | 4 16 | mpbird |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) ) | 
						
							| 18 |  | cardnn |  |-  ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 19 | 11 18 | syl |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) | 
						
							| 20 | 17 19 | sseqtrd |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( ( card ` A ) +o ( card ` B ) ) ) |