Metamath Proof Explorer


Theorem ficardun2OLD

Description: Obsolete version of ficardun2 as of 3-Jul-2024. (Contributed by Mario Carneiro, 5-Feb-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ficardun2OLD A Fin B Fin card A B card A + 𝑜 card B

Proof

Step Hyp Ref Expression
1 undjudom A Fin B Fin A B A ⊔︀ B
2 finnum A Fin A dom card
3 finnum B Fin B dom card
4 cardadju A dom card B dom card A ⊔︀ B card A + 𝑜 card B
5 2 3 4 syl2an A Fin B Fin A ⊔︀ B card A + 𝑜 card B
6 domentr A B A ⊔︀ B A ⊔︀ B card A + 𝑜 card B A B card A + 𝑜 card B
7 1 5 6 syl2anc A Fin B Fin A B card A + 𝑜 card B
8 unfi A Fin B Fin A B Fin
9 finnum A B Fin A B dom card
10 8 9 syl A Fin B Fin A B dom card
11 ficardom A Fin card A ω
12 ficardom B Fin card B ω
13 nnacl card A ω card B ω card A + 𝑜 card B ω
14 11 12 13 syl2an A Fin B Fin card A + 𝑜 card B ω
15 nnon card A + 𝑜 card B ω card A + 𝑜 card B On
16 onenon card A + 𝑜 card B On card A + 𝑜 card B dom card
17 14 15 16 3syl A Fin B Fin card A + 𝑜 card B dom card
18 carddom2 A B dom card card A + 𝑜 card B dom card card A B card card A + 𝑜 card B A B card A + 𝑜 card B
19 10 17 18 syl2anc A Fin B Fin card A B card card A + 𝑜 card B A B card A + 𝑜 card B
20 7 19 mpbird A Fin B Fin card A B card card A + 𝑜 card B
21 cardnn card A + 𝑜 card B ω card card A + 𝑜 card B = card A + 𝑜 card B
22 14 21 syl A Fin B Fin card card A + 𝑜 card B = card A + 𝑜 card B
23 20 22 sseqtrd A Fin B Fin card A B card A + 𝑜 card B