Metamath Proof Explorer


Theorem ficardun2OLD

Description: Obsolete version of ficardun2 as of 3-Jul-2024. (Contributed by Mario Carneiro, 5-Feb-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ficardun2OLD
|- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( ( card ` A ) +o ( card ` B ) ) )

Proof

Step Hyp Ref Expression
1 undjudom
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) ~<_ ( A |_| B ) )
2 finnum
 |-  ( A e. Fin -> A e. dom card )
3 finnum
 |-  ( B e. Fin -> B e. dom card )
4 cardadju
 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) )
5 2 3 4 syl2an
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) )
6 domentr
 |-  ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) -> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) )
7 1 5 6 syl2anc
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) )
8 unfi
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin )
9 finnum
 |-  ( ( A u. B ) e. Fin -> ( A u. B ) e. dom card )
10 8 9 syl
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. dom card )
11 ficardom
 |-  ( A e. Fin -> ( card ` A ) e. _om )
12 ficardom
 |-  ( B e. Fin -> ( card ` B ) e. _om )
13 nnacl
 |-  ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om )
14 11 12 13 syl2an
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om )
15 nnon
 |-  ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( ( card ` A ) +o ( card ` B ) ) e. On )
16 onenon
 |-  ( ( ( card ` A ) +o ( card ` B ) ) e. On -> ( ( card ` A ) +o ( card ` B ) ) e. dom card )
17 14 15 16 3syl
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) e. dom card )
18 carddom2
 |-  ( ( ( A u. B ) e. dom card /\ ( ( card ` A ) +o ( card ` B ) ) e. dom card ) -> ( ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) <-> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) )
19 10 17 18 syl2anc
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) <-> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) )
20 7 19 mpbird
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) )
21 cardnn
 |-  ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) )
22 14 21 syl
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) )
23 20 22 sseqtrd
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( ( card ` A ) +o ( card ` B ) ) )