Metamath Proof Explorer


Theorem fimadmfoALT

Description: Alternate proof of fimadmfo , based on fores . A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fimadmfoALT F:ABF:AontoFA

Proof

Step Hyp Ref Expression
1 fdm F:ABdomF=A
2 frel F:ABRelF
3 resdm RelFFdomF=F
4 3 eqcomd RelFF=FdomF
5 2 4 syl F:ABF=FdomF
6 reseq2 domF=AFdomF=FA
7 5 6 sylan9eq F:ABdomF=AF=FA
8 1 7 mpdan F:ABF=FA
9 ffun F:ABFunF
10 eqimss2 domF=AAdomF
11 1 10 syl F:ABAdomF
12 9 11 jca F:ABFunFAdomF
13 12 adantr F:ABF=FAFunFAdomF
14 fores FunFAdomFFA:AontoFA
15 13 14 syl F:ABF=FAFA:AontoFA
16 foeq1 F=FAF:AontoFAFA:AontoFA
17 16 adantl F:ABF=FAF:AontoFAFA:AontoFA
18 15 17 mpbird F:ABF=FAF:AontoFA
19 8 18 mpdan F:ABF:AontoFA