Metamath Proof Explorer


Theorem fin23lem15

Description: Lemma for fin23 . U is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a U=seqωiω,uViftiu=utiurant
Assertion fin23lem15 AωBωBAUAUB

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 fveq2 b=BUb=UB
3 2 sseq1d b=BUbUBUBUB
4 fveq2 b=aUb=Ua
5 4 sseq1d b=aUbUBUaUB
6 fveq2 b=sucaUb=Usuca
7 6 sseq1d b=sucaUbUBUsucaUB
8 fveq2 b=AUb=UA
9 8 sseq1d b=AUbUBUAUB
10 ssidd BωUBUB
11 1 fin23lem13 aωUsucaUa
12 11 ad2antrr aωBωBaUsucaUa
13 sstr2 UsucaUaUaUBUsucaUB
14 12 13 syl aωBωBaUaUBUsucaUB
15 3 5 7 9 10 14 findsg AωBωBAUAUB