Metamath Proof Explorer


Theorem fin23lem16

Description: Lemma for fin23 . U ranges over the original set; in particular ran U is a set, although we do not assume here that U is. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a U=seqωiω,uViftiu=utiurant
Assertion fin23lem16 ranU=rant

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 unissb ranUrantaranUarant
3 1 fnseqom UFnω
4 fvelrnb UFnωaranUbωUb=a
5 3 4 ax-mp aranUbωUb=a
6 peano1 ω
7 0ss b
8 1 fin23lem15 bωωbUbU
9 7 8 mpan2 bωωUbU
10 6 9 mpan2 bωUbU
11 vex tV
12 11 rnex rantV
13 12 uniex rantV
14 1 seqom0g rantVU=rant
15 13 14 ax-mp U=rant
16 10 15 sseqtrdi bωUbrant
17 sseq1 Ub=aUbrantarant
18 16 17 syl5ibcom bωUb=aarant
19 18 rexlimiv bωUb=aarant
20 5 19 sylbi aranUarant
21 2 20 mprgbir ranUrant
22 fnfvelrn UFnωωUranU
23 3 6 22 mp2an UranU
24 15 23 eqeltrri rantranU
25 elssuni rantranUrantranU
26 24 25 ax-mp rantranU
27 21 26 eqssi ranU=rant