Metamath Proof Explorer


Theorem fincssdom

Description: In a chain of finite sets, dominance and subset coincide. (Contributed by Stefan O'Rear, 8-Nov-2014)

Ref Expression
Assertion fincssdom AFinBFinABBAABAB

Proof

Step Hyp Ref Expression
1 simpl1 AFinBFinABBA¬ABAFin
2 simpr AFinBFinABBA¬AB¬AB
3 simpl3 AFinBFinABBA¬ABABBA
4 orel1 ¬ABABBABA
5 2 3 4 sylc AFinBFinABBA¬ABBA
6 dfpss3 BABA¬AB
7 5 2 6 sylanbrc AFinBFinABBA¬ABBA
8 php3 AFinBABA
9 1 7 8 syl2anc AFinBFinABBA¬ABBA
10 9 ex AFinBFinABBA¬ABBA
11 domnsym AB¬BA
12 11 con2i BA¬AB
13 10 12 syl6 AFinBFinABBA¬AB¬AB
14 13 con4d AFinBFinABBAABAB
15 ssdomg BFinABAB
16 15 3ad2ant2 AFinBFinABBAABAB
17 14 16 impbid AFinBFinABBAABAB