Metamath Proof Explorer


Theorem findcard2s

Description: Variation of findcard2 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012)

Ref Expression
Hypotheses findcard2s.1 x=φψ
findcard2s.2 x=yφχ
findcard2s.3 x=yzφθ
findcard2s.4 x=Aφτ
findcard2s.5 ψ
findcard2s.6 yFin¬zyχθ
Assertion findcard2s AFinτ

Proof

Step Hyp Ref Expression
1 findcard2s.1 x=φψ
2 findcard2s.2 x=yφχ
3 findcard2s.3 x=yzφθ
4 findcard2s.4 x=Aφτ
5 findcard2s.5 ψ
6 findcard2s.6 yFin¬zyχθ
7 6 ex yFin¬zyχθ
8 snssi zyzy
9 ssequn1 zyzy=y
10 8 9 sylib zyzy=y
11 uncom zy=yz
12 10 11 eqtr3di zyy=yz
13 vex yV
14 13 eqvinc y=yzxx=yx=yz
15 12 14 sylib zyxx=yx=yz
16 2 bicomd x=yχφ
17 16 3 sylan9bb x=yx=yzχθ
18 17 exlimiv xx=yx=yzχθ
19 15 18 syl zyχθ
20 19 biimpd zyχθ
21 7 20 pm2.61d2 yFinχθ
22 1 2 3 4 5 21 findcard2 AFinτ