Metamath Proof Explorer


Theorem findreccl

Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008)

Ref Expression
Hypothesis findreccl.1 z P G z P
Assertion findreccl C ω A P rec G A C P

Proof

Step Hyp Ref Expression
1 findreccl.1 z P G z P
2 rdg0g A P rec G A = A
3 eleq1a A P rec G A = A rec G A P
4 2 3 mpd A P rec G A P
5 nnon y ω y On
6 fveq2 z = rec G A y G z = G rec G A y
7 6 eleq1d z = rec G A y G z P G rec G A y P
8 7 1 vtoclga rec G A y P G rec G A y P
9 rdgsuc y On rec G A suc y = G rec G A y
10 9 eleq1d y On rec G A suc y P G rec G A y P
11 8 10 syl5ibr y On rec G A y P rec G A suc y P
12 5 11 syl y ω rec G A y P rec G A suc y P
13 12 a1d y ω A P rec G A y P rec G A suc y P
14 4 13 findfvcl C ω A P rec G A C P