Metamath Proof Explorer


Theorem fineqvacALT

Description: Shorter proof of fineqvac using ax-rep and ax-pow . (Contributed by BTernaryTau, 21-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fineqvacALT Fin=VCHOICE

Proof

Step Hyp Ref Expression
1 ssv domcardV
2 1 a1i Fin=VdomcardV
3 finnum xFinxdomcard
4 3 ssriv Findomcard
5 sseq1 Fin=VFindomcardVdomcard
6 4 5 mpbii Fin=VVdomcard
7 2 6 eqssd Fin=Vdomcard=V
8 dfac10 CHOICEdomcard=V
9 7 8 sylibr Fin=VCHOICE