Metamath Proof Explorer


Theorem fineqvacALT

Description: Shorter proof of fineqvac using ax-rep and ax-pow . (Contributed by BTernaryTau, 21-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fineqvacALT Fin = V CHOICE

Proof

Step Hyp Ref Expression
1 ssv dom card V
2 1 a1i Fin = V dom card V
3 finnum x Fin x dom card
4 3 ssriv Fin dom card
5 sseq1 Fin = V Fin dom card V dom card
6 4 5 mpbii Fin = V V dom card
7 2 6 eqssd Fin = V dom card = V
8 dfac10 CHOICE dom card = V
9 7 8 sylibr Fin = V CHOICE