Metamath Proof Explorer


Theorem fineqvpow

Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024)

Ref Expression
Assertion fineqvpow Fin=Vyzwwzwxzy

Proof

Step Hyp Ref Expression
1 df-pw 𝒫x=v|vx
2 vex xV
3 eleq2w2 Fin=VxFinxV
4 pwfi xFin𝒫xFin
5 3 4 bitr3di Fin=VxV𝒫xFin
6 2 5 mpbii Fin=V𝒫xFin
7 6 elexd Fin=V𝒫xV
8 1 7 eqeltrrid Fin=Vv|vxV
9 elisset v|vxVyy=v|vx
10 8 9 syl Fin=Vyy=v|vx
11 sseq1 v=zvxzx
12 11 eqabbw y=v|vxzzyzx
13 12 exbii yy=v|vxyzzyzx
14 10 13 sylib Fin=Vyzzyzx
15 biimpr zyzxzxzy
16 15 alimi zzyzxzzxzy
17 16 eximi yzzyzxyzzxzy
18 14 17 syl Fin=Vyzzxzy
19 dfss2 zxwwzwx
20 19 imbi1i zxzywwzwxzy
21 20 albii zzxzyzwwzwxzy
22 21 exbii yzzxzyyzwwzwxzy
23 18 22 sylib Fin=Vyzwwzwxzy