Step |
Hyp |
Ref |
Expression |
1 |
|
df-pw |
⊢ 𝒫 𝑥 = { 𝑣 ∣ 𝑣 ⊆ 𝑥 } |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
eleq2w2 |
⊢ ( Fin = V → ( 𝑥 ∈ Fin ↔ 𝑥 ∈ V ) ) |
4 |
|
pwfi |
⊢ ( 𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin ) |
5 |
3 4
|
bitr3di |
⊢ ( Fin = V → ( 𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin ) ) |
6 |
2 5
|
mpbii |
⊢ ( Fin = V → 𝒫 𝑥 ∈ Fin ) |
7 |
6
|
elexd |
⊢ ( Fin = V → 𝒫 𝑥 ∈ V ) |
8 |
1 7
|
eqeltrrid |
⊢ ( Fin = V → { 𝑣 ∣ 𝑣 ⊆ 𝑥 } ∈ V ) |
9 |
|
elisset |
⊢ ( { 𝑣 ∣ 𝑣 ⊆ 𝑥 } ∈ V → ∃ 𝑦 𝑦 = { 𝑣 ∣ 𝑣 ⊆ 𝑥 } ) |
10 |
8 9
|
syl |
⊢ ( Fin = V → ∃ 𝑦 𝑦 = { 𝑣 ∣ 𝑣 ⊆ 𝑥 } ) |
11 |
|
sseq1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥 ) ) |
12 |
11
|
abeq2w |
⊢ ( 𝑦 = { 𝑣 ∣ 𝑣 ⊆ 𝑥 } ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑦 𝑦 = { 𝑣 ∣ 𝑣 ⊆ 𝑥 } ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) ) |
14 |
10 13
|
sylib |
⊢ ( Fin = V → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) ) |
15 |
|
biimpr |
⊢ ( ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) → ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ) |
16 |
15
|
alimi |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) → ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ) |
17 |
16
|
eximi |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ) |
18 |
14 17
|
syl |
⊢ ( Fin = V → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ) |
19 |
|
dfss2 |
⊢ ( 𝑧 ⊆ 𝑥 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ) |
20 |
19
|
imbi1i |
⊢ ( ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
21 |
20
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
22 |
21
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
23 |
18 22
|
sylib |
⊢ ( Fin = V → ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |