Metamath Proof Explorer


Theorem fineqvpow

Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024)

Ref Expression
Assertion fineqvpow ( Fin = V → ∃ 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 df-pw 𝒫 𝑥 = { 𝑣𝑣𝑥 }
2 vex 𝑥 ∈ V
3 eleq2w2 ( Fin = V → ( 𝑥 ∈ Fin ↔ 𝑥 ∈ V ) )
4 pwfi ( 𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin )
5 3 4 bitr3di ( Fin = V → ( 𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin ) )
6 2 5 mpbii ( Fin = V → 𝒫 𝑥 ∈ Fin )
7 6 elexd ( Fin = V → 𝒫 𝑥 ∈ V )
8 1 7 eqeltrrid ( Fin = V → { 𝑣𝑣𝑥 } ∈ V )
9 elisset ( { 𝑣𝑣𝑥 } ∈ V → ∃ 𝑦 𝑦 = { 𝑣𝑣𝑥 } )
10 8 9 syl ( Fin = V → ∃ 𝑦 𝑦 = { 𝑣𝑣𝑥 } )
11 sseq1 ( 𝑣 = 𝑧 → ( 𝑣𝑥𝑧𝑥 ) )
12 11 abeq2w ( 𝑦 = { 𝑣𝑣𝑥 } ↔ ∀ 𝑧 ( 𝑧𝑦𝑧𝑥 ) )
13 12 exbii ( ∃ 𝑦 𝑦 = { 𝑣𝑣𝑥 } ↔ ∃ 𝑦𝑧 ( 𝑧𝑦𝑧𝑥 ) )
14 10 13 sylib ( Fin = V → ∃ 𝑦𝑧 ( 𝑧𝑦𝑧𝑥 ) )
15 biimpr ( ( 𝑧𝑦𝑧𝑥 ) → ( 𝑧𝑥𝑧𝑦 ) )
16 15 alimi ( ∀ 𝑧 ( 𝑧𝑦𝑧𝑥 ) → ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) )
17 16 eximi ( ∃ 𝑦𝑧 ( 𝑧𝑦𝑧𝑥 ) → ∃ 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 ) )
18 14 17 syl ( Fin = V → ∃ 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 ) )
19 dfss2 ( 𝑧𝑥 ↔ ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) )
20 19 imbi1i ( ( 𝑧𝑥𝑧𝑦 ) ↔ ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
21 20 albii ( ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
22 21 exbii ( ∃ 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 ) ↔ ∃ 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
23 18 22 sylib ( Fin = V → ∃ 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )