Metamath Proof Explorer


Theorem finnisoeu

Description: A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion finnisoeu ROrAAFin∃!ffIsomE,RcardAA

Proof

Step Hyp Ref Expression
1 eqid OrdIsoRA=OrdIsoRA
2 1 oiexg AFinOrdIsoRAV
3 2 adantl ROrAAFinOrdIsoRAV
4 simpr ROrAAFinAFin
5 wofi ROrAAFinRWeA
6 1 oiiso AFinRWeAOrdIsoRAIsomE,RdomOrdIsoRAA
7 4 5 6 syl2anc ROrAAFinOrdIsoRAIsomE,RdomOrdIsoRAA
8 1 oien AFinRWeAdomOrdIsoRAA
9 4 5 8 syl2anc ROrAAFindomOrdIsoRAA
10 ficardid AFincardAA
11 10 adantl ROrAAFincardAA
12 11 ensymd ROrAAFinAcardA
13 entr domOrdIsoRAAAcardAdomOrdIsoRAcardA
14 9 12 13 syl2anc ROrAAFindomOrdIsoRAcardA
15 1 oion AFindomOrdIsoRAOn
16 15 adantl ROrAAFindomOrdIsoRAOn
17 ficardom AFincardAω
18 17 adantl ROrAAFincardAω
19 onomeneq domOrdIsoRAOncardAωdomOrdIsoRAcardAdomOrdIsoRA=cardA
20 16 18 19 syl2anc ROrAAFindomOrdIsoRAcardAdomOrdIsoRA=cardA
21 14 20 mpbid ROrAAFindomOrdIsoRA=cardA
22 isoeq4 domOrdIsoRA=cardAOrdIsoRAIsomE,RdomOrdIsoRAAOrdIsoRAIsomE,RcardAA
23 21 22 syl ROrAAFinOrdIsoRAIsomE,RdomOrdIsoRAAOrdIsoRAIsomE,RcardAA
24 7 23 mpbid ROrAAFinOrdIsoRAIsomE,RcardAA
25 isoeq1 f=OrdIsoRAfIsomE,RcardAAOrdIsoRAIsomE,RcardAA
26 3 24 25 spcedv ROrAAFinffIsomE,RcardAA
27 wemoiso2 RWeA*ffIsomE,RcardAA
28 5 27 syl ROrAAFin*ffIsomE,RcardAA
29 df-eu ∃!ffIsomE,RcardAAffIsomE,RcardAA*ffIsomE,RcardAA
30 26 28 29 sylanbrc ROrAAFin∃!ffIsomE,RcardAA