Description: A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | finnisoeu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | oiexg | |
3 | 2 | adantl | |
4 | simpr | |
|
5 | wofi | |
|
6 | 1 | oiiso | |
7 | 4 5 6 | syl2anc | |
8 | 1 | oien | |
9 | 4 5 8 | syl2anc | |
10 | ficardid | |
|
11 | 10 | adantl | |
12 | 11 | ensymd | |
13 | entr | |
|
14 | 9 12 13 | syl2anc | |
15 | 1 | oion | |
16 | 15 | adantl | |
17 | ficardom | |
|
18 | 17 | adantl | |
19 | onomeneq | |
|
20 | 16 18 19 | syl2anc | |
21 | 14 20 | mpbid | |
22 | isoeq4 | |
|
23 | 21 22 | syl | |
24 | 7 23 | mpbid | |
25 | isoeq1 | |
|
26 | 3 24 25 | spcedv | |
27 | wemoiso2 | |
|
28 | 5 27 | syl | |
29 | df-eu | |
|
30 | 26 28 29 | sylanbrc | |