Metamath Proof Explorer


Theorem fisupclrnmpt

Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fisupclrnmpt.x xφ
fisupclrnmpt.r φROrA
fisupclrnmpt.b φBFin
fisupclrnmpt.n φB
fisupclrnmpt.c φxBCA
Assertion fisupclrnmpt φsupranxBCARA

Proof

Step Hyp Ref Expression
1 fisupclrnmpt.x xφ
2 fisupclrnmpt.r φROrA
3 fisupclrnmpt.b φBFin
4 fisupclrnmpt.n φB
5 fisupclrnmpt.c φxBCA
6 eqid xBC=xBC
7 1 6 5 rnmptssd φranxBCA
8 6 rnmptfi BFinranxBCFin
9 3 8 syl φranxBCFin
10 1 5 6 4 rnmptn0 φranxBC
11 fisupcl ROrAranxBCFinranxBCranxBCAsupranxBCARranxBC
12 2 9 10 7 11 syl13anc φsupranxBCARranxBC
13 7 12 sseldd φsupranxBCARA