Metamath Proof Explorer


Theorem fisupg

Description: Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fisupg ROrAAFinAxAyA¬xRyyAyRxzAyRz

Proof

Step Hyp Ref Expression
1 fimaxg ROrAAFinAxAyAxyyRx
2 sotrieq2 ROrAxAyAx=y¬xRy¬yRx
3 2 simprbda ROrAxAyAx=y¬xRy
4 3 ex ROrAxAyAx=y¬xRy
5 4 anassrs ROrAxAyAx=y¬xRy
6 5 a1dd ROrAxAyAx=yxyyRx¬xRy
7 pm2.27 xyxyyRxyRx
8 so2nr ROrAxAyA¬xRyyRx
9 pm3.21 yRxxRyxRyyRx
10 9 con3d yRx¬xRyyRx¬xRy
11 8 10 syl5com ROrAxAyAyRx¬xRy
12 11 anassrs ROrAxAyAyRx¬xRy
13 7 12 syl9r ROrAxAyAxyxyyRx¬xRy
14 6 13 pm2.61dne ROrAxAyAxyyRx¬xRy
15 14 ralimdva ROrAxAyAxyyRxyA¬xRy
16 breq2 z=xyRzyRx
17 16 rspcev xAyRxzAyRz
18 17 ex xAyRxzAyRz
19 18 ralrimivw xAyAyRxzAyRz
20 19 adantl ROrAxAyAyRxzAyRz
21 15 20 jctird ROrAxAyAxyyRxyA¬xRyyAyRxzAyRz
22 21 reximdva ROrAxAyAxyyRxxAyA¬xRyyAyRxzAyRz
23 22 3ad2ant1 ROrAAFinAxAyAxyyRxxAyA¬xRyyAyRxzAyRz
24 1 23 mpd ROrAAFinAxAyA¬xRyyAyRxzAyRz