Metamath Proof Explorer


Theorem fldextsubrg

Description: Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Hypothesis fldextsubrg.1 U = Base F
Assertion fldextsubrg E /FldExt F U SubRing E

Proof

Step Hyp Ref Expression
1 fldextsubrg.1 U = Base F
2 fldextfld1 E /FldExt F E Field
3 fldextfld2 E /FldExt F F Field
4 brfldext E Field F Field E /FldExt F F = E 𝑠 Base F Base F SubRing E
5 2 3 4 syl2anc E /FldExt F E /FldExt F F = E 𝑠 Base F Base F SubRing E
6 5 ibi E /FldExt F F = E 𝑠 Base F Base F SubRing E
7 6 simprd E /FldExt F Base F SubRing E
8 1 7 eqeltrid E /FldExt F U SubRing E