Metamath Proof Explorer


Theorem fldsdrgfldext

Description: A sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldsdrgfldext.1 G = F 𝑠 A
fldsdrgfldext.2 φ F Field
fldsdrgfldext.3 φ A SubDRing F
Assertion fldsdrgfldext φ F /FldExt G

Proof

Step Hyp Ref Expression
1 fldsdrgfldext.1 G = F 𝑠 A
2 fldsdrgfldext.2 φ F Field
3 fldsdrgfldext.3 φ A SubDRing F
4 fldsdrgfld F Field A SubDRing F F 𝑠 A Field
5 2 3 4 syl2anc φ F 𝑠 A Field
6 1 5 eqeltrid φ G Field
7 eqid Base F = Base F
8 7 sdrgss A SubDRing F A Base F
9 1 7 ressbas2 A Base F A = Base G
10 3 8 9 3syl φ A = Base G
11 10 oveq2d φ F 𝑠 A = F 𝑠 Base G
12 1 11 eqtrid φ G = F 𝑠 Base G
13 sdrgsubrg A SubDRing F A SubRing F
14 3 13 syl φ A SubRing F
15 10 14 eqeltrrd φ Base G SubRing F
16 brfldext F Field G Field F /FldExt G G = F 𝑠 Base G Base G SubRing F
17 16 biimpar F Field G Field G = F 𝑠 Base G Base G SubRing F F /FldExt G
18 2 6 12 15 17 syl22anc φ F /FldExt G