Metamath Proof Explorer


Theorem fliftel1

Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F=ranxXAB
flift.2 φxXAR
flift.3 φxXBS
Assertion fliftel1 φxXAFB

Proof

Step Hyp Ref Expression
1 flift.1 F=ranxXAB
2 flift.2 φxXAR
3 flift.3 φxXBS
4 opex ABV
5 eqid xXAB=xXAB
6 5 elrnmpt1 xXABVABranxXAB
7 4 6 mpan2 xXABranxXAB
8 7 adantl φxXABranxXAB
9 8 1 eleqtrrdi φxXABF
10 df-br AFBABF
11 9 10 sylibr φxXAFB