Metamath Proof Explorer


Theorem flmulnn0

Description: Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009) (Proof shortened by Fan Zheng, 7-Jun-2016)

Ref Expression
Assertion flmulnn0 N0ANANA

Proof

Step Hyp Ref Expression
1 reflcl AA
2 1 adantl N0AA
3 simpr N0AA
4 simpl N0AN0
5 4 nn0red N0AN
6 4 nn0ge0d N0A0N
7 flle AAA
8 7 adantl N0AAA
9 2 3 5 6 8 lemul2ad N0ANANA
10 5 3 remulcld N0ANA
11 nn0z N0N
12 flcl AA
13 zmulcl NANA
14 11 12 13 syl2an N0ANA
15 flge NANANANANANA
16 10 14 15 syl2anc N0ANANANANA
17 9 16 mpbid N0ANANA