Description: A counterexample to FLT implies a counterexample to FLT with A , B (assigned to A / ( A gcd B ) and B / ( A gcd B ) ) coprime (by divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fltabcoprmex.a | |
|
fltabcoprmex.b | |
||
fltabcoprmex.c | |
||
fltabcoprmex.n | |
||
fltabcoprmex.1 | |
||
Assertion | fltabcoprmex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fltabcoprmex.a | |
|
2 | fltabcoprmex.b | |
|
3 | fltabcoprmex.c | |
|
4 | fltabcoprmex.n | |
|
5 | fltabcoprmex.1 | |
|
6 | gcdnncl | |
|
7 | 1 2 6 | syl2anc | |
8 | 7 | nncnd | |
9 | 7 | nnne0d | |
10 | 1 | nncnd | |
11 | 2 | nncnd | |
12 | 3 | nncnd | |
13 | 8 9 10 11 12 4 5 | fltdiv | |