Metamath Proof Explorer


Theorem fltabcoprmex

Description: A counterexample to FLT implies a counterexample to FLT with A , B (assigned to A / ( A gcd B ) and B / ( A gcd B ) ) coprime (by divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a φ A
fltabcoprmex.b φ B
fltabcoprmex.c φ C
fltabcoprmex.n φ N 0
fltabcoprmex.1 φ A N + B N = C N
Assertion fltabcoprmex φ A A gcd B N + B A gcd B N = C A gcd B N

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a φ A
2 fltabcoprmex.b φ B
3 fltabcoprmex.c φ C
4 fltabcoprmex.n φ N 0
5 fltabcoprmex.1 φ A N + B N = C N
6 gcdnncl A B A gcd B
7 1 2 6 syl2anc φ A gcd B
8 7 nncnd φ A gcd B
9 7 nnne0d φ A gcd B 0
10 1 nncnd φ A
11 2 nncnd φ B
12 3 nncnd φ C
13 8 9 10 11 12 4 5 fltdiv φ A A gcd B N + B A gcd B N = C A gcd B N