Metamath Proof Explorer


Theorem fltabcoprmex

Description: A counterexample to FLT implies a counterexample to FLT with A , B (assigned to A / ( A gcd B ) and B / ( A gcd B ) ) coprime (by divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a φA
fltabcoprmex.b φB
fltabcoprmex.c φC
fltabcoprmex.n φN0
fltabcoprmex.1 φAN+BN=CN
Assertion fltabcoprmex φAAgcdBN+BAgcdBN=CAgcdBN

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a φA
2 fltabcoprmex.b φB
3 fltabcoprmex.c φC
4 fltabcoprmex.n φN0
5 fltabcoprmex.1 φAN+BN=CN
6 gcdnncl ABAgcdB
7 1 2 6 syl2anc φAgcdB
8 7 nncnd φAgcdB
9 7 nnne0d φAgcdB0
10 1 nncnd φA
11 2 nncnd φB
12 3 nncnd φC
13 8 9 10 11 12 4 5 fltdiv φAAgcdBN+BAgcdBN=CAgcdBN