| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcddvds |
|
| 2 |
1
|
3adant3 |
|
| 3 |
|
gcdcl |
|
| 4 |
3
|
nn0zd |
|
| 5 |
|
simpl |
|
| 6 |
4 5
|
jca |
|
| 7 |
6
|
3adant3 |
|
| 8 |
|
divides |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
simpr |
|
| 11 |
4 10
|
jca |
|
| 12 |
11
|
3adant3 |
|
| 13 |
|
divides |
|
| 14 |
12 13
|
syl |
|
| 15 |
9 14
|
anbi12d |
|
| 16 |
|
bezout |
|
| 17 |
16
|
3adant3 |
|
| 18 |
|
oveq1 |
|
| 19 |
|
oveq1 |
|
| 20 |
18 19
|
oveqan12rd |
|
| 21 |
20
|
eqeq2d |
|
| 22 |
21
|
bicomd |
|
| 23 |
|
simpl |
|
| 24 |
23
|
zcnd |
|
| 25 |
24
|
adantl |
|
| 26 |
3
|
nn0cnd |
|
| 27 |
26
|
3adant3 |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
simpl |
|
| 30 |
29
|
zcnd |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
25 28 31
|
mul32d |
|
| 33 |
|
simpr |
|
| 34 |
33
|
zcnd |
|
| 35 |
34
|
adantl |
|
| 36 |
|
simpr |
|
| 37 |
36
|
zcnd |
|
| 38 |
37
|
ad2antlr |
|
| 39 |
35 28 38
|
mul32d |
|
| 40 |
32 39
|
oveq12d |
|
| 41 |
40
|
eqeq2d |
|
| 42 |
23
|
adantl |
|
| 43 |
29
|
ad2antlr |
|
| 44 |
42 43
|
zmulcld |
|
| 45 |
4
|
3adant3 |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
44 46
|
zmulcld |
|
| 48 |
33
|
adantl |
|
| 49 |
36
|
ad2antlr |
|
| 50 |
48 49
|
zmulcld |
|
| 51 |
3
|
3adant3 |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
52
|
nn0zd |
|
| 54 |
50 53
|
zmulcld |
|
| 55 |
47 54
|
zaddcld |
|
| 56 |
55
|
zcnd |
|
| 57 |
|
gcd2n0cl |
|
| 58 |
|
nnrp |
|
| 59 |
58
|
rpcnne0d |
|
| 60 |
57 59
|
syl |
|
| 61 |
60
|
ad2antrr |
|
| 62 |
|
div11 |
|
| 63 |
28 56 61 62
|
syl3anc |
|
| 64 |
|
divid |
|
| 65 |
61 64
|
syl |
|
| 66 |
47
|
zcnd |
|
| 67 |
54
|
zcnd |
|
| 68 |
|
divdir |
|
| 69 |
66 67 61 68
|
syl3anc |
|
| 70 |
44
|
zcnd |
|
| 71 |
51
|
nn0cnd |
|
| 72 |
71
|
ad2antrr |
|
| 73 |
57
|
nnne0d |
|
| 74 |
73
|
ad2antrr |
|
| 75 |
70 72 74
|
divcan4d |
|
| 76 |
50
|
zcnd |
|
| 77 |
76 28 74
|
divcan4d |
|
| 78 |
75 77
|
oveq12d |
|
| 79 |
69 78
|
eqtrd |
|
| 80 |
65 79
|
eqeq12d |
|
| 81 |
41 63 80
|
3bitr2d |
|
| 82 |
22 81
|
sylan9bbr |
|
| 83 |
|
eqcom |
|
| 84 |
|
simpr |
|
| 85 |
84
|
anim1ci |
|
| 86 |
|
bezoutr1 |
|
| 87 |
85 86
|
syl |
|
| 88 |
87
|
adantr |
|
| 89 |
83 88
|
biimtrid |
|
| 90 |
|
simpll1 |
|
| 91 |
90
|
zcnd |
|
| 92 |
|
divmul3 |
|
| 93 |
91 25 61 92
|
syl3anc |
|
| 94 |
|
eqcom |
|
| 95 |
|
eqcom |
|
| 96 |
93 94 95
|
3bitr4g |
|
| 97 |
96
|
biimprd |
|
| 98 |
97
|
a1d |
|
| 99 |
98
|
imp32 |
|
| 100 |
|
simp2 |
|
| 101 |
100
|
zcnd |
|
| 102 |
101
|
ad2antrr |
|
| 103 |
|
divmul3 |
|
| 104 |
102 35 61 103
|
syl3anc |
|
| 105 |
|
eqcom |
|
| 106 |
|
eqcom |
|
| 107 |
104 105 106
|
3bitr4g |
|
| 108 |
107
|
biimprd |
|
| 109 |
108
|
a1dd |
|
| 110 |
109
|
imp32 |
|
| 111 |
99 110
|
oveq12d |
|
| 112 |
111
|
eqeq1d |
|
| 113 |
89 112
|
sylibd |
|
| 114 |
82 113
|
sylbid |
|
| 115 |
114
|
exp32 |
|
| 116 |
115
|
com34 |
|
| 117 |
116
|
com23 |
|
| 118 |
117
|
ex |
|
| 119 |
118
|
com23 |
|
| 120 |
119
|
rexlimdvva |
|
| 121 |
17 120
|
mpd |
|
| 122 |
121
|
impl |
|
| 123 |
122
|
rexlimdva |
|
| 124 |
123
|
com23 |
|
| 125 |
124
|
rexlimdva |
|
| 126 |
125
|
impd |
|
| 127 |
15 126
|
sylbid |
|
| 128 |
2 127
|
mpd |
|