Metamath Proof Explorer


Theorem fncnvimaeqv

Description: The inverse images of the universal class _V under functions on the universal class _V are the universal class _V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020)

Ref Expression
Assertion fncnvimaeqv FFnVF-1V=V

Proof

Step Hyp Ref Expression
1 fncnvima2 FFnVF-1V=yV|FyV
2 fveq2 y=xFy=Fx
3 2 eleq1d y=xFyVFxV
4 3 elrab xyV|FyVxVFxV
5 fvexd FFnVFxV
6 5 biantrud FFnVxVxVFxV
7 4 6 bitr4id FFnVxyV|FyVxV
8 7 eqrdv FFnVyV|FyV=V
9 1 8 eqtrd FFnVF-1V=V