Metamath Proof Explorer


Theorem fnfvof

Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014) (Proof shortened by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion fnfvof FFnAGFnAAVXAFRfGX=FXRGX

Proof

Step Hyp Ref Expression
1 simpll FFnAGFnAAVFFnA
2 simplr FFnAGFnAAVGFnA
3 simpr FFnAGFnAAVAV
4 inidm AA=A
5 eqidd FFnAGFnAAVXAFX=FX
6 eqidd FFnAGFnAAVXAGX=GX
7 1 2 3 3 4 5 6 ofval FFnAGFnAAVXAFRfGX=FXRGX
8 7 anasss FFnAGFnAAVXAFRfGX=FXRGX