Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019) (Revised by AV, 3-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fnmpoovd.m | |
|
fnmpoovd.s | |
||
fnmpoovd.d | |
||
fnmpoovd.c | |
||
Assertion | fnmpoovd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoovd.m | |
|
2 | fnmpoovd.s | |
|
3 | fnmpoovd.d | |
|
4 | fnmpoovd.c | |
|
5 | 4 | 3expb | |
6 | 5 | ralrimivva | |
7 | eqid | |
|
8 | 7 | fnmpo | |
9 | 6 8 | syl | |
10 | eqfnov2 | |
|
11 | 1 9 10 | syl2anc | |
12 | nfcv | |
|
13 | nfcv | |
|
14 | nfcv | |
|
15 | nfcv | |
|
16 | 12 13 14 15 2 | cbvmpo | |
17 | 16 | eqcomi | |
18 | 17 | a1i | |
19 | 18 | oveqd | |
20 | 19 | eqeq2d | |
21 | 20 | 2ralbidv | |
22 | simprl | |
|
23 | simprr | |
|
24 | 3 | 3expb | |
25 | eqid | |
|
26 | 25 | ovmpt4g | |
27 | 22 23 24 26 | syl3anc | |
28 | 27 | eqeq2d | |
29 | 28 | 2ralbidva | |
30 | 11 21 29 | 3bitrd | |